
D
ra
ft

How network models contribute to science∗

Charles Rathkopf†

May 4, 2023

Abstract

Network models represent complex empirical systems by means of

graphs, composed of nothing more than nodes and edges, which them-

selves lack internal structure. Graphs can be constructed from empirical

data, on the basis of simple rules that do not require much theoretical

insight into the target system. Moreover, network models do not com-

press the data they represent. In typical network models, the mapping

from data to graph is invertible. For these reasons, network modeling

can seem more like a trendy format for data summary than the powerful

modeling framework it is sometimes claimed to be. This chapter shows

that, despite the apparent simplicity of the graph construction process,

network modeling is indeed an inferentially powerful modeling framework

that enables novel forms of discovery, prediction, and explanation. There-

after, the chapter explores the fact that network properties seem to crop

up repeatedly, across a wide variety of empirical domains. How surprising

is this fact? Does it occur because the relevant empirical domains are

intrinsically network-like, or for more pragmatic reasons to do with the

way we are disposed to reason about them?1

∗This is a draft for a chapter that will appear in the forthcoming Routledge Handbook on
the Philosophy of Scientific Modeling, edited by Tarja Kuuttila, Natalia Carrillo and Rami
Koskinen.

†Institute for Brain and Behavior, Jülich Research Center
1Many thanks to Kareem Khalifa and Daniel Kostić for their insightful and detailed com-

ments on an earlier draft of this chapter.
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1 Introduction

Network models are surprisingly easy to construct. There are at least two

reasons for this. First, the construction process typically requires rather lit-

tle theoretical guidance. Network models represent empirical objects as graph

nodes, and relations between objects as graph edges. The objects in question

are usually discrete and, at least when viewed within the relevant scientific con-

text, easily individuated. Examples include people, corporations, power plants,

academic publications, tree species, and protein types. Moreover, the rules that

govern the mapping between the graph and the data are straightforward. On

the mathematical side, the nodes and edges are simple mathematical objects,

mostly devoid of internal structure. On the empirical side, data sets typically

include only a few types of object. Often, there is just one. Data sets also

typically include only a few types of relation between objects. Again, there is

often just one.

Another reason that network models are easy to construct is that the con-

struction of the model does not involve any attempt to capture patterns hidden

in the data, and therefore does not involve data compression. Typically, once

the data set has been cleaned, every object and relation gets represented. In this

respect, network models are radically different from the compact, closed-form

equations that have historically been viewed as the standard-bearer of scientific

representation. These two observations about the construction of network mod-

els might lead one to think that such models must be superficial. They may

look more like a trendy format for data summary than an innovative modeling

strategy, capable of supporting profound scientific insight.

This last thought is mistaken, and it is the burden of this chapter to show

why. The central thesis is that network models are capable of supporting pro-

found insight into a surprisingly diverse range of phenomena. This view is

supported with three case studies, selected to show that network models play

an indispensable role in prediction, discovery, and explanation. Before getting

into the case studies, the chapter provides a brief overview of the history that

led to modern network modeling, and introduces a few of the most common

mathematical concepts. The chapter concludes with a discussion of the fact

that network models are applicable to an enormously diverse range of empirical

phenomena. This point has been emphasized by advocates of network model-

ing, and has been used, at least occasionally, to support grandiose claims about

the role of network models within the larger scientific enterprise. The account
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developed here is comparatively tempered, but not dismissive. It suggests that

the trans-domain applicability of network models may sometimes offer us new

and currently under-appreciated opportunities for scientific unification.

2 The emergence of network science

Modern network modeling emerged from the confluence of two historical re-

search traditions, one in pure mathematics, and the other in social science. On

the mathematical side, the paper “On the Evolution of Random Graphs,” by

Paul Erdős and Alfred Rényi, introduced modern techniques for studying large

graphs analytically (Erdős et al., 1960). In that paper, Erdős and Rényi imagine

a large set of nodes, along with all of the possible graphs that can be constructed

from that set, where a graph is simply a configuration of edges that connect the

nodes. They prove that the set of all possible graphs with n nodes has several

interesting properties. For example, they prove that, as n tends to infinity, the

size of the largest connected subgraph follows a Poisson distribution. On the

social science side, Mark Granovetter’s paper “The Strength of Weak Ties,”

(1973) showed how quantitative properties of social graphs could provide socio-

logical insight. It showed, on the basis of both empirical data and hypothetical

reasoning, that weak social ties play an outsized role in generating macroscopic

sociological phenomena. The crux of his reasoning is that, unlike friends, mere

acquaintances move in social circles different from one’s own. As a result, ac-

quaintances provide links to social groups that are both valuable and otherwise

inaccessible. When it comes to finding a job, for example, acquaintances tend

to be more advantageous than friends.

Modern network modeling can be viewed as a synthesis of the two research

traditions that emerged, respectively, from these two papers. To see this, it

helps to note some of the most salient differences between the two traditions.

First, the sociological tradition used networks as a means of representing em-

pirical data, while the mathematical tradition did not. Second, the sociological

tradition focused primarily on networks with complex, non-random structure,

while the mathematical tradition focused primarily on either random or lattice-

like networks, both of which are more susceptible to mathematical analysis than

complex graphs. Third, the mathematical tradition focused on networks that

were large or infinite, while the sociological tradition, especially early on, fo-

cused on networks that were quite small (Granovetter’s paper, for example, was
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based on data from just 54 people.)

Modern network analysis blends these two traditions together. It studies

graphs that are large, but based on empirical data, and therefore finite. More-

over, most empirical networks are neither perfectly ordered nor perfectly ran-

dom, and are, therefore, difficult to study using purely analytical techniques.

To understand how large and complex networks behave under different param-

eter settings, computer simulations are required. Today, a large part of what

is sometimes called network science involves the discovery of algorithms that

can compute interesting properties of large complex graphs. Because many of

these properties are probabilistic, one typically needs to study a whole ensem-

ble of graphs, which is computationally demanding. It is therefore no accident

that modern network modeling emerged only after the rise of cheap computing

power.

The first papers to undertake this synthesis, and which, in so doing, launched

the modern era of network modeling, appeared between 1998 and 2000. The two

most frequently cited are Watts and Strogatz (1998), in which the small-world

model was introduced, and Barabási and Albert (1999) in which the so-called

BA preferential attachment model was introduced. In 2005, a crucial and under-

appreciated historical landmark in the development of network modeling was the

release of an open-source Python library called NetworkX. NetworkX made it

possible to convert lists and matrices into networks, compute common network

properties, and visualize networks graphically (Hagberg et al., 2008). Once

that software was released, scientists in many other fields began to use network

analysis on their data, which in turn drove the development of new software for

network analysis.

3 Common graph-theoretic concepts

Network models are based on the mathematics of graphs. A graph consists of

a set of nodes and a set of edges, where an edge is just a two-element set of

nodes (Trudeau, 1976). Graphs are typically visualized as points and lines on

a plane, but for the purposes of computing, a graph is represented as a type

of matrix. The most common type of matrix for representing a graph is an

adjacency matrix. In an adjacency matrix, both axes are defined by the set

of nodes. If a direct connection exists between two nodes, their intersection is

marked with a 1, indicating the presence of an edge; otherwise, it is marked
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with a 0.

A =

0 1 0 0 1 0

1 0 1 1 0 0

0 1 0 1 1 1

0 1 1 0 0 0

1 0 1 0 0 0

0 0 1 0 0 0

The same information can also be represented as an incidence matrix, which

is a matrix defined by the nodes on one axis and the edges on the other. In-

cidence matrices are used less often than adjacency matrices but are favored

for the representation of networks that are both large and sparse, because, in

those cases, incidence matrices can be represented more compactly than adja-

cency matrices. (Where n is the number of nodes, and m is the number of

edges, a sparse graph is one in which n >> m. An adjacency matrix has di-

mensions n×n, which makes it larger than the corresponding incidence matrix

with dimensions n×m.)

The introduction sketched an intuitively appealing inference from the claim

that networks are easy to construct to claim that they are superficial, or in-

ferentially weak. One way to resist this cynical inference is to emphasize the

distinction between constructing a network model, and using it productively,

once constructed. To use a network model to make inferences about the target

system, you have to (i) choose the appropriate network properties to measure,

and (ii) interpret the theoretical significance of those measurements. While

the second of these two steps certainly does demand domain-specific empirical

knowledge, it is less clear what sort of knowledge is required for the first step.

A natural assumption would be that you need domain-specific knowledge of

the target system in order to know which properties of the associated network

representation are worth measuring. However, virtually all popular accounts of

network science defend (or at least assert) the idea that, regardless of which

empirical domain you are working in, the same set of network properties end

up being important. This claim is both fascinating and puzzling, and it will be

discussed it more detail below. Here, I only want to mention it as justification

for the suggestion that one can understand a surprisingly large swath of network

science modeling ideas on the basis of a rather small number of graph-theoretical
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concepts.

The following short list of network science concepts captures some of the

most basic and most frequently used concepts. The characterizations are not

rigorous definitions, but provide enough information to render the subsequent

discussion accessible.

1. Node degree: the number of nodes with which a given node is connected.

2. Path length: the length of the shortest path that can be traversed between

two nodes.

3. Clustering coefficient: a measure of how likely it is that there is an edge

between nodes A and C, given that there is an edge between A and B,

and another between B and C.

4. Small-worldness: the ratio of clustering coefficient to average path length.

5. Scale-free network: a network whose node degree distribution follows a

power law.

6. Random graph: a graph in which the edges between nodes is determined

by some random selection process.

7. Regular graph: a lattice-like graph in which every node has the same

degree.

Although each of these properties is a property of a graph, not all of them can

be found in books on graph theory per se. For an overview of network properties

as they pertain to network modeling, readers are advised to consult one of the

many textbook treatments of network modeling ideas. Newman (2005) does a

particularly good job of balancing ease of exposition with mathematical rigor.

4 Reasoning with networks

Each of the concepts listed above is exploited by the reasoning in the case

studies below. Before turning to those, one source of potential confusion must

be addressed. The reasoning in each case study draws not only on a graph and

a graph-to-data mapping, but also on additional modeling apparatus. When

additional modeling apparatus is required, a defender of the view that network

models are superficial might say that the case studies described here fail to
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support the primary non-superficiality thesis, because the models in question

are not pure network models. Their success, therefore, may have little to do

with networks per se. Although one can find examples of pure network models

in the relevant sense (such as models that account for why author citation

networks have the distributions they do), I do not discuss them here, since such

pure network models have played a relatively minor role in the advancement

of scientific knowledge over the past 25 years. More dramatic progress has

been made by combining graph theoretical representation with other kinds of

modeling apparatus (such as, for example, a system of differential equations.)

The focus here on hybrid models, as we might call them, might prompt an

objection of the following sort. One could only gather support for the thesis

defended here (that network modeling supports profound forms of scientific

inference) if one could first work out, with respect to any given inference, how

to distinguish cleanly between the insight contributed by the network model,

and the insight contributed by the other modeling apparatus. This demand

for a crisp criterion of model individuation is asking for too much. The claim

that network modeling has made a substantive and distinctive contribution to

science need not rely on specific criteria for counting network models. Adequate

support for the claim can be provided simply by identifying network properties

that are practically indispensable for novel forms of scientific inference. If at

least some of those inferences can be described as profound, the central thesis

defended in this chapter follows logically. By formulating the central thesis in

terms of properties rather than models, it can be reconciled with a wider variety

of views about the nature of scientific models. In particular, a given collection

of network properties can be viewed either as constitutive of a pure network

model, which, as a contingent matter, was used in conjunction with another

model, or they can be viewed merely as a subset of elements within a larger,

more multifaceted model. Both views are compatible with the central thesis of

this chapter.

4.1 Discovery

One area in which network modeling has been used to make new discoveries is in

molecular biology. In a landmark paper, Spirin and Mirny (2003) undertook a

network-based analysis of an existing, open-source database of protein-protein

interactions in yeast, which were themselves detected by well-established ex-

perimental methods. Protein-protein interactions are biochemical interactions
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between proteins that allow them to function together as part of a molecular

machine that accomplishes some cell function. Most mesoscale cell functions are

carried out by a large family of proteins, not all of which engage in direct bio-

chemical reactions with one another. In addition, many of the protein-protein

interactions involved in any given mesoscale cell function simply have yet to be

probed experimentally. For both reasons, there will often be proteins that play

an important role in a given cell function, but which are not yet known to do so.

Spirin and Mirny used network modeling to facilitate a new process for protein

discovery that is radically more efficient than what was previously possible.

The network they constructed consisted of 3,992 nodes, each representing

a protein type, and 6,500 edges, each representing a known protein-protein

interaction. Their primary goal was to locate biologically significant clusters

within this network. This is trickier than it sounds. Even the problem of

identifying the single largest cluster in a graph is NP-hard, so developing efficient

search algorithms is a non-trivial mathematical problem. Spirin and Mirny

designed an algorithm to find the maximum of the function:

Q(m,n) = 2m/(n(n− 1))

where m is the number of interactions between n nodes. Q characterizes

the density of the cluster. The algorithm uses a Monte Carlo procedure that

starts with a set of nodes, selected at random, and then replaces members of

that set, re-computing Q for each new set until it converges. They then selected

all clusters with a Q value high enough to make it statistically significant. (Sta-

tistical significance is evidence that supports a rejection of the null hypothesis,

which is itself typically formulated as the claim that the observation in question

appeared by chance. In this setting, the operational meaning of “appeared by

chance” is that it appears in a graph which is itself a member of an ensemble of

graphs that was generated by a random graph construction procedure.)

With that done, Spirin and Mirny worked out which cell function the cluster

of proteins contributes to. In each complex, at least some proteins were already

known, and their functions were annotated in the open-source database. They

hypothesized that the other proteins in the cluster would contribute to the same

function; an inference strategy known as guilt-by-association. This led to a suite

of predictions about the functional role of proteins that were in the cluster, but

not yet known to be involved in the cell function associated with that cluster.

The Spirin and Mirny paper counts as a significant contribution to scientific
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discovery for two reasons. First, their predictions radically reduced the space

of proteins to be tested experimentally, and thereby made it easier to choose

experiments that were likely to have valuable results. The second reason is that,

since it was first published in 2003, their predictions have been largely confirmed

by experiment (Omranian et al., 2022). Moreover, the methods they developed

for identifying protein complexes have been widely reused by other labs which

have themselves made valuable discoveries with it.

Spirin and Mirny’s work shows that network properties play a role in sci-

entific discovery. There are good reasons to believe, furthermore, that the role

they play is practically ineliminable. The space of possible protein-protein inter-

actions is enormous. One could not practically perform the sort of experimental

screening (such as two-hybrid screening) required to detect each possible in-

teraction. In the absence of that brute force approach, one needs to make

predictions about which proteins are likely to interact with each other from

some set of known protein-protein interactions. Predictions of this sort can be

divided into two classes: those that rely on theoretical knowledge of the pro-

teins involved, and those that do not. If you go with the former class, you may

get some predictive traction, but your predictions will be painstaking and slow.

In the latter class, you make many predictions at scale. If you want to gener-

ate predictions at scale, it is necessary to represent the full suite of structural

relations (interaction vs. no-interaction) that characterize the pre-theoretical

domain. To construct an uncompressed data representation of a suite of objects

and structural relations is to construct a network. Therefore, if you want to

make a large class of predictions about biologically significant protein clusters,

network representation is practically ineliminable.

4.2 Prediction

One can hardly write about the use of network models in 2022 and fail to discuss

their use in modeling the Covid-19 pandemic. One of the puzzling facts about

the early phase of the Covid-19 pandemic was that in many countries, after

an initial wave in which the infection rate grew exponentially, it continued to

grow linearly, even though, according to standard epidemiological models, the

probability of sustained linear growth is effectively zero. The models in question,

commonly known as susceptible-immune-recovered (SIR) models, predict either

exponential growth or exponential decay whenever the reproduction number R

deviates even slightly from 1. The reproduction number can be defined as the
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expected number of secondary infections an infected person will cause, and it is

rarely precisely equal to one.

The fact that steady linear growth was observed over long periods of time

suggests, therefore, that the SIR models were missing something important

about Covid-19 dynamics. Of course, epidemics are intrinsically difficult pro-

cesses to predict. They are stochastic, they are influenced by many social and

biological variables, and, at least in early stages, they are non-linear. Conse-

quently, one cannot expect high precision predictions. Even when holding all

parameter values constant, infection curves can look quite different from one

run of the simulation to the next, and the total number of infected people can

vary by a factor of two. Still, by casting the structure of the population as

a network, it becomes possible to represent the critical degree of a population

explicitly and use it to improve predictive traction.

Following the work of Pastor-Satoris and Vaspigani (2001), Thurner et al.

(2020) simulated the SIR model in a network environment. Nodes represent

people, and edges between people represent physical proximity sufficient for vi-

ral transmission. Each person is represented as having a particular number of

contacts per day to whom they could theoretically transmit the virus. That

number is called the node degree and it varies from person to person, following

a distribution that is designed to mimic the contact structure of real human

populations. The network was based on empirical data, but Thurner et al. con-

structed their network by algorithmic means. Algorithmic construction allowed

them to vary the parameters of the network systematically, but also shouldered

them with the burden of having to run model fitting tests to check how well

the algorithmically generated model fits the empirical data. Of particular rel-

evance are the facts that (i) during lockdown, the average degree D drops to

near family size, and (ii) there will be some interactions between families, but

these interactions will not take the form of giant hubs.

Intuitively, the higher the average degree, the more easily a virus will spread.

In their simulations, Thurner et al. observed a qualitative shift in disease dy-

namics when D drops below a critical threshold. Above the threshold, the

epidemic grows exponentially; below it, growth remains linear. This qualita-

tive shift roughly captures the effect of lockdown policies during the summer

of 2020. Once lockdown measures were in place, the contact structure of the

population dropped to a value only slightly higher than the average family size.

(The exact value of D at which this qualitative shift occurs is not a universal

property of epidemics. It depends on the transmission rate of the virus, among
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other factors.) Using this model, Thurner et al. managed to outperform extant

predictions of the Covid-19 infection curves in both Austria and the USA. The

choice of these two countries was significant because they differ so dramatically.

Austria adopted strict lockdown polices early in the pandemic, while the USA

introduced weaker lockdown policies later on. Despite these and many other

differences between the two countries, Thurner et al. achieved this predictive

improvement by choosing a value of D to fit empirical estimates of contact

structure before and after lockdown measures were in place.

Crucially, this work deserves to be counted as a case of prediction, rather

than model fitting, because the representative infection curves were captured

without having to fit any other model parameters, all of which were chosen at

the outset on the basis of measurement.

4.3 Explanation

At the neural level, an epileptic seizure is an episode of synchronized hyperex-

citatory spiking activity. One of the puzzling things about epilepsy is that it

is often caused by injuries that induce a substantial loss of neural connectivity.

Intuitively, connectivity should facilitate hyperexcitability, since, when connec-

tivity is high, there are more paths between the input activation and those

neurons farthest from the input layer. In light of this intuition, a natural ques-

tion is: why does a loss of connectivity lead to hyperexcitability? Answering

this question is crucial to understanding why epileptic seizures occur.

The core of the answer to this question is that hyperexcitability is not due to

the loss of connectivity itself, but to the new pattern of connectivity that emerges

in the wake of that loss. In other words, the answer depends on a change in the

topological structure of the network. This idea was first suggested by Percha

et al. (2005). Although that paper suggested the correct topological answer to

our question, it was based on a small simulation of 144 neurons. As a result, it

was unclear whether the simulation could justifiably be interpreted as a guide

to post-injury epilepsy in humans. Dyhrfjeld-Johnson et al. (2007) published a

radically more extensive model that confirmed and expanded the initial results.

The Dyhrfjeld-Johnson paper focused on the dentate gyrus, a part of the

temporal cortex known both to be involved in the generation of seizures, and

to be unusually sensitive to injury. Dyhrfjeld-Johnson et al. built a nearly

full-scale model of the dentate gyrus of the rat brain, with 50,000 neurons and

over one billion connections. On top of each node in the graph, they built a
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compartmental model neuron, which captures the spiking behavior of neurons

as a response to electrical input.

The dependent variable in this study is the degree of hyperexcitability in the

network, which is defined as a function of (i) the proportion of the neurons in the

network that get activated after a particular input, (ii) the length of the interval

between initial activation and the activation of the last neuron to be activated,

and (iii) the duration of the whole network activation, once achieved. The

primary independent variable is the degree of small-worldness of the network

topology.

How does getting hit on the head lead to an increase in the small-worldness

of your dentate gyrus? The answer to this question is incomplete, but interest-

ing. Some cell types are more susceptible to injury than others. Hilar cells are

both particularly susceptible to injury and highly connected. So, when these

cells die out after injury, connectivity drops drastically. Soon afterward, granule

cells (GCs) begin to form new connections at a greater rate than usual. More-

over, they form excitatory recurrent connections to other GCs, which, in the

healthy brain is very rare (about 0.05 percent of all possible GC-GC pairs share

a synaptic connection.) Some of these GCs connect at rates that are extreme,

in comparison with the expected level of connectivity, and thereby become net-

work hubs. These facts are supported directly by physiological observation, but

are not themselves well-understood. So let us set aside the question of why GCs

sprout new recurrent connections after the injury. Instead, we want to focus on

what the new topology is like, and how that topology influences hyperexcitabil-

ity in the spiking neuron model.

Two topological characteristics stand out. First, although the healthy den-

tate gyrus is already estimated to have the small-world property to some degree,

the post-injury dentate gyrus has a very high degree of small-worldness, with

low average path length, and, nevertheless, high local connectivity. In this case,

the path length dropped to an extremely low value: on average, two neurons are

connected by less than three edges, even though there are 50,000 neurons, and

despite the fact that connectivity in the post-injury model is only 4.7 percent

of what it was previously. The topology leads to hyperexcitability gradually,

until reaching a threshold. Until that threshold is reached, you get monotonic

increases in hyperexcitability with small-worldness. Since other properties of

the network are held fixed, only the topological property can explain the hy-

perexcitability. Robustness analysis reveals that the effect is stable. Under a

parameter sweep, the link between small-worldness and hyperexcitability re-
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mains largely unchanged.

The Dyhrfjeld-Johnson model answers the following why-question: why do

injuries to the temporal lobe increase susceptibility to epileptic seizures, even

though they trigger substantial loss of connectivity? The answer is that (i)

injury causes an increase in the small-worldness of the topology of the dentate

gyrus, (ii) the increase in small-worldness promotes hyperexcitability, even in

the absence of other physiological changes (iii) hyperexcitability is a state of

increased susceptibility to epileptic seizure. For a full defense of the view that

this case study deserves to be counted as an explanation, rather than as a

mere description, it would be necessary to lay out one or more philosophical

theories of explanation. There is no room for that project here, but one can

find accounts of explanation congenial to the view in Rathkopf (2018), Kostic

(2018), and Kostic and Khalifa (2021).

5 Network science is not superficial

In the introduction, two characteristics of the process of constructing a graph

from empirical data were described. The first was that, once you have an appro-

priately structured data set, constructing a graph from the data does not require

additional theoretical knowledge of the empirical domain. The second was that

constructing a network model does not involve data compression. When you

construct a network model, all the data gets recapitulated in graph-theoretic

form. These two characteristics can give the misleading impression that network

modeling is a superficial enterprise, in the sense that network models are likely

to facilitate only rather shallow empirical inferences. The case studies above

were selected to illustrate that this impression is incorrect. Network models

are practically indispensable for certain kinds of scientific inference, some of

which are profound. Here I will attempt to make the case for this claim more

systematically.

Let us start with the subsidiary claim that network models are practically

indispensable. The term “practically indispensable” refers to a weak form of

necessity: it is not logically impossible to draw the conclusions at issue by means

of some other modeling strategy, or by means of some other representational

apparatus. Rather, the claim is that, given the contingent constraints involved

in real scientific practice, a network model of some kind is the only viable option.

In the first case study, Spirin and Mirny used their network model to draw a
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host of conclusions about the functional contributions of various proteins. While

it is logically possible that someone might have reached the same conclusions

experimentally, the number of experiments required would be in the tens of

millions. In the second case study, Thurner et al. used a network representation

of the contact structure of a population under lockdown to improve predictions

about the Covid-19 infection curve. In that case, the only alternative to network

representation is to invoke the so-called mean-field assumption, which says that

the probability of anyone coming into contact with anyone else is the same.

As Thurner et al. argue, however, the mean-field assumption breaks down

under conditions of lockdown. In the third case study, Dyhrfjeld-Johnson et

al. showed that the propensity for epilepsy in patients with head trauma is

explained by the degree of small-worldness of the dentate gyrus. You cannot

invoke the small-world property in an explanation without some form of network

representation. In this case, therefore, the network representation is not only

practically necessary, but also logically necessary.

Furthermore, it does seem that the inferences enabled by network representa-

tions are at least sometimes profound. In each of the case studies, the inference

enabled by appeal to network representation delivered a non-obvious answer to

a substantive and important scientific question: (i) What is the function of that

protein? (ii) why does Covid-19 last so long? (iii) Why do people sometimes get

epilepsy after head injuries? If a scientific inference delivers a non-obvious and

substantive answer to questions like these, the inference itself may be regarded

as profound.

One might still suspect that there is another sense in which network model-

ing is superficial. Network modeling may appear, from an epistemological point

of view, rather like a free lunch: it is substantial, but nevertheless undemanding.

That is, although the incorporation of network representation into a given sci-

entific enterprise may substantially enrich that enterprise, it does not demand

any expertise. People from each discipline may find it useful to use network

modeling, in much the same way they may find it useful to use elementary

arithmetic, but the relevant techniques are so straightforward as to make claims

of expertise in network science overblown. However, as Elek and Babarkzy

(2022) argue, network modeling has become a field in its own right, and one

in which it is possible to gain expertise. This expertise is visible in our three

case studies. Spirin and Mirny needed to know how to build an algorithm that

identifies clusters satisfying quantitative criteria. The design of such algorithms

demands considerable computational expertise, even though such expertise is
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not domain-specific empirical knowledge. In both the second and third case

studies, the authors needed to integrate a static network model with a dynami-

cal model, vary the topological properties of the network model systematically,

and record the effects of that intervention on the dynamical model. To achieve

that end, both studies went far beyond the simple task of constructing a graph

from empirical data. Both studies involved the algorithmic construction of a

graph, along with a statistical analysis to check how well the algorithmically-

constructed graph fit the empirical data. In summary, we can identify at least

four kinds of expert knowledge involved in network modeling.

1. Constructing graphs by algorithm and varying their properties systemat-

ically.

2. Devising algorithms to find empirically significant substructures in empir-

ically constructed graphs.

3. Using model fitting statistics to assess how well an algorithmically con-

structed graph fits an empirically constructed graph.

4. Integrating other representational apparatus into the network model.

Because network modeling is practically necessary for generating at least

some profound scientific inferences, and because it is, increasingly, a field in

which computational expertise can be accumulated, network modeling cannot

reasonably be regarded as a superficial science.

6 Trans-domain applicability

Perhaps the most philosophically interesting thing about network modeling is

the fact that the same network properties seem to crop up in many otherwise

unrelated empirical domains. Network modelers often suggest that this fact has

far-reaching implications. One of the leading voices in network modeling, Albert

Barabási, says:

A key discovery of network science is that the architecture of net-

works emerging in various domains of science, nature, and technol-

ogy are similar to each other, a consequence of being governed by

the same organizing principles. Consequently we can use a common

set of mathematical tools to explore these system ((Barabási, 2016,

p.8)).
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Is the similarity among observed network architectures really a consequence

of the fact that networks across domains are governed by the same organizing

principles? One of the most discussed principles in the network science literature

is that all or most empirical networks have a scale-free distribution over node

degree. That is, where k is the degree of a single node, the distribution over

values of k is given by: P (k) = k(−α), where the critical exponent α takes a

value between 2 and 3. There is a robust and quite technical debate about how

broadly this power law relation actually applies to measured networks (Voitalov

et al., 2019; Broido and Clauset, 2019; Zhang et al., 2015; Newman, 2005). The

debate proceeds by gathering node-distribution estimates from many different

data sets, fitting those estimates to a power law, and summarizing the results in

a large table. The curious thing about this debate is that little effort has been

given toward determining the appropriate reference class. That is, if we think of

the power law relation above as a first-order property of empirical systems, then

there should be a way of expressing the generalization in terms of the logical

schema: ∀x(Fx→Gx) where G refers to the property of satisfying the power

law distribution. The reference class problem is simply that we should be able

to say which property plays the role of F . As far as I can tell, there seems to

be no hard conceptual boundaries on the class of systems that can be modeled

as networks. If that impression is correct, the property F may not exist. In

that case, the frequency with which scale-free node degree distributions appear

in nature is simply undefined, and the debate about the relative frequency of

scale-free networks is conceptually muddled. Perhaps all that is needed to rectify

the situation is a more careful exposition of the goal of gathering such data

sets. Rather than framing the work as an attempt to capture the frequency of

network properties in nature, it can be framed as an attempt to examine the

many varieties of scale-free networks in nature, and then, to work out whether

they have other interesting properties in common.

Thus far, I have talked about trans-domain applicability of networks or net-

work models. If we want to think more rigorously about the unit of scientific

representation that has the capacity to be applied across empirical domains,

these shorthand expressions are likely to be misleading. The term “network” is

ambiguous between an object in nature and our representation of it. Arguably,

the term “network model” refers to something that is not applicable across do-

mains at all. This will depend on philosophical theories about what models

are. As an example, however, consider the view a network model consists of

two parts: (i) a graph, and (ii) a mapping between the graph and the target
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system. If you conceive of models that way, then their individuation conditions

are too fine-grained for them to be applicable across empirical domains. In-

stead, as suggested in Humphreys (2004), we should invoke the broader notion

of a computational template. Computational templates are syntactic objects

that come with an intended interpretation, but which are flexible enough to be

applied to new phenomena. Their primary attraction is the fact that they serve

as a point around which computational expertise can be gathered. As Richard

Feynman likes to repeat in his famous lectures on physics, the same equations

have the same solutions Feynman et al. (2010). Science is therefore easier if you

can re-use equations whose solutions, whether computational or analytic, have

been worked out by others.

In the case of network modeling, we should say that the unit of scientific

representation that has the capacity for trans-domain applicability is the net-

work template. Although this idea is new, there is a rich and growing lit-

erature on trans-domain modeling and computational templates which begins

with Humphreys 2004 and includes many more recent articles. Of particular

relevance to the discussion of networks is Knuuttila and Loettgers (2016).

7 Generating conditions for networks

If we accept that the claims about network properties being realized in vastly

different systems are both true and non-trivial, we will then naturally want to

ask why this is the case. This sort of question might have many answers, but

one important answer will point to the generating conditions for networks of

that kind. If we can show that models of network generation can be described

in terms of abstract conditions, and if we can get enough clarity about how to

interpret those conditions in empirical terms, then perhaps we can show that

different systems that appear radically distinct when described in terms of their

more superficial empirical features, are actually quite similar with respect to the

fact that they both satisfy these abstract conditions. For example, it may be

the case that citation networks of certain kinds can be explained by means of

a preferential attachment model. It also may be the case that the distribution

of city sizes can be explained by a similar preferential attachment model. We

would then have a kind of model-based unification of the two processes that

is grounded in an etiological mechanism, but which is nevertheless formulated

at a level of abstraction that seems to leave implementation details far behind.
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Preferential attachment, as formalized in the well-known BA model mentioned

at the beginning, is only one of several models of network construction. Oth-

ers include the Initial Attractiveness Model, Internal Links Model, Node Dele-

tion Model, Accelerated Growth Model, and the Aging Model (for details see

Barabási (2016)). All of these models of network generation are domain-general.

So, although they could perhaps furnish an etiological explanation in terms of

causes, they would presumably differ from mechanistic explanations, which are

domain-specific. An interesting avenue of further research is to articulate the

kind of explanation we have when we show that the process by which some

empirical system was generated is well-described by one of these network gen-

eration models above. If we could gather a long list of such systems, we could

group them in terms of their abstract generating model, and thereby broaden

the unification base.

To conclude, network science shows that what you can learn about some

phenomenon depends on the way you represent it. Most of the prominent ex-

amples of network science are cases in which we learn new facts about target

systems that are composed of elements that are already familiar. Nevertheless,

by choosing to represent these systems as networks, there is much to be learned

that would have been inaccessible without the network representation.
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